On compactifications with path connected remainders
نویسندگان
چکیده
منابع مشابه
On Compactifications with Path Connected Remainders
We prove that every separable and metrizable space admits a metrizable compactification with a remainder that is both path connected and locally path connected. This result answers a question of P. Simon. Connectedness and compactness are two fundamental topological properties. A natural question is whether a given space admits a connected (Hausdorff) compactification. This question has been st...
متن کاملOrdered Compactifications with Countable Remainders
Countable compactifications of topological spaces have been studied in [1], [5], [7], and [9]. In [7], Magill showed that a locally compact, T2 topological space X has a countable T2 compactification if and only if it has n-point T2 compactifications for every integer n ≥ 1. We generalize this theorem to T2-ordered compactifications of ordered topological spaces. Before starting our generalizat...
متن کاملA remark on Remainders of homogeneous spaces in some compactifications
We prove that a remainder $Y$ of a non-locally compact rectifiable space $X$ is locally a $p$-space if and only if either $X$ is a Lindel"{o}f $p$-space or $X$ is $sigma$-compact, which improves two results by Arhangel'skii. We also show that if a non-locally compact rectifiable space $X$ that is locally paracompact has a remainder $Y$ which has locally a $G_{delta}$-diagonal, then...
متن کاملAbout remainders in compactifications of paratopological groups
In this paper, we prove a dichotomy theorem for remainders in compactifications of paratopological groups: every remainder of a paratopological group $G$ is either Lindel"{o}f and meager or Baire. Furthermore, we give a negative answer to a question posed in [D. Basile and A. Bella, About remainders in compactifications of homogeneous spaces, Comment. Math. Univ. Caroli...
متن کاملNonhomogeneity of Remainders, Ii
We present an example of a separable metrizable topological group G having the property that no remainder of it is (topologically) homogeneous. 1. Introduction. All topological spaces under discussion are Tychonoff. A space X is homogeneous if for any two points x, y ∈ X there is a homeomorphism h from X onto itself such that h(x) = y. If bX is a com-pactification of a space X, then bX \ X is c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2008
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-08-09567-1